欢迎来到中国稀土学会! 新会员注册个人会员登录
  • 关注学会
    微信服务号

  • 关注学会
    微信订阅号

Nano Res.│北京理工大学徐熙焱、张东翔:共掺杂二氧化钛纳米颗粒不完全煅烧强化电荷分离效率促进异噻唑啉酮光催化降解发布时间:2024年3月13日 来源:X-MOL

 背景介绍

 为了应对反渗透过程中可能引发的生物污染问题,广泛采用生物抑菌剂来抑制微生物的繁殖。其中,异噻唑啉酮(BIT)因其高效且广谱的特性而被作为抑菌剂广泛应用。然而,过度使用异噻唑啉酮也引发了一系列问题。生物接触异噻唑啉酮可能导致皮肤过敏、神经细胞死亡等负面影响,并对生态环境造成潜在危害,因此应在排放前对异噻唑啉酮进行处理。传统的处理方法通常采用臭氧氧化,然而这一过程不仅能耗较高,还伴随着二次污染问题。为了解决异噻唑啉酮处理中的难题,光催化技术受到广泛探索。锐钛矿相二氧化钛具有高光催化活性和强氧化还原能力,但其在仅占太阳光谱4%的紫外光区域展示出较高活性。此外,二氧化钛上产生的光生电子-空穴对易发生重组,对光催化性能带来不利影响。因此,改性二氧化钛来降低其禁带宽度、抑制电子-空穴对的复合,并拓展其光吸收范围,成为解决光催化处理异噻唑啉酮所面临挑战的关键之一。

 成果简介

 为提升二氧化钛的光催化性能,引入了B元素替代TiO2中的O,创造氧空位和电子缺陷。同时,以稀土金属Gd元素对TiO2进行掺杂,替代Ti。相对于Ti,Gd原子的较大半径,因而Gd的掺杂导致电荷不平衡,使TiO2晶格扭曲,产生更多氧空位,这有利于太阳辐射下形成电子-空穴对,并延缓电荷载流子的复合。金属或非金属元素的掺杂有助于产生反应性自由基,如•OH和O2•−,促进有机污染物的吸附和降解。此外,降低TiO2制备过程中的煅烧温度导致TiO2前体(如钛酸四丁酯)不完全矿化,这能够引入部分碳掺杂,以增加氧空位并导致带隙变窄。同时,碳掺杂提高材料的亲水性,有助于有机污染物的吸附和催化降解。为深入研究光催化剂自由基的生成和污染物降解机理,还进行了表征、猝灭实验、电子自旋共振(ESR)测试、质谱(MS)分析以及密度泛函理论(DFT)计算等研究。

联系地址:北京市海淀区高粱桥斜街13号院乙27号楼 邮政编码:100081 联系电话:01062173497 传真:010-62173501 电子邮箱:csre@cs-re.org.cn
版权所有 ©中国稀土学会 京ICP备05010140号-1